Pointwise bounds of orthogonal expansions on the real line via weighted Hilbert transforms

نویسنده

  • S. B. Damelin
چکیده

We study pointwise bounds of orthogonal expansions on the real line for a class of exponential weights of smooth polynomial decay at infinity. As a consequence of our main results, we establish pointwise bounds for weighted Hilbert transforms which are of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Convergence of a Class of Non-orthogonal Wavelet Expansions

Non-orthogonal wavelet expansions associated with a class of mother wavelets is considered. This class of wavelets comprises mother wavelets that are not necessarily integrable over the whole real line, such as Shannon’s wavelet. The pointwise convergence of these wavelet expansions is investigated. It is shown that, unlike other wavelet expansions, the ones under consideration do not necessari...

متن کامل

POINTWISE PSEUDO-METRIC ON THE L-REAL LINE

In this paper, a pointwise pseudo-metric function on the L-realline is constructed. It is proved that the topology induced by this pointwisepseudo-metric is the usual topology.

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

An Inequality for Bi-orthogonal Pairs

We use Salem’s method [13, 14] to prove an inequality of Kwapień and Pełczyński concerning a lower bound for partial sums of series of bi-orthogonal vectors in a Hilbert space, or the dual vectors. This is applied to some lower bounds on L norms for orthogonal expansions.

متن کامل

Computing the Hilbert transform and its inverse

We construct a new method for approximating Hilbert transforms and their inverse throughout the complex plane. Both problems can be formulated as Riemann–Hilbert problems via Plemelj’s lemma. Using this framework, we rederive existing approaches for computing Hilbert transforms over the real line and unit interval, with the added benefit that we can compute the Hilbert transform in the complex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2007